Author Affiliations
Abstract
1 SANKEN (Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, Japan
2 Kansai Institute for Photon Science (KPSI), National Institutes for Quantum Science and Technology (QST), Kizugawa-city, Kyoto, Japan
3 RIKEN SPring-8 Center, Sayo, Hyogo, Japan
Supersonic gas jets generated via a conical nozzle are widely applied in the laser wakefield acceleration of electrons. The stability of the gas jet is critical to the electron injection and the reproducibility of the wakefield acceleration. Here we discussed the role of the stilling chamber in a modified converging–diverging nozzle to dissipate the turbulence and to stabilize the gas jets. By the fluid dynamics simulations and the Mach–Zehnder interferometer measurements, the instability originating from the nonlinear turbulence is studied and the mechanism to suppress the instability is proposed. Both the numerical and experimental results prove that the carefully designed nozzle with a stilling chamber is able to reduce the perturbation by more than 10% compared with a simple-conical nozzle.
shock injection hydrodynamic stability laser wakefield acceleration laser–plasma interaction 
High Power Laser Science and Engineering
2023, 11(6): 06000e91
Author Affiliations
Abstract
1 Institute of Physics of the ASCR, ELI-Beamlines, Na Slovance 2, 18221 Prague, Czech Republic
2 Institute of Laser Engineering, Osaka University, Osaka565-0871, Japan
3 Kansai Photon Research Institute, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Kizugawa-shi, Kyoto 619-0215, Japan
Magnetic reconnection driven by laser plasma interactions attracts great interests in the recent decades. Motivated by the rapid development of the laser technology, the ultra strong magnetic field generated by the laser-plasma accelerated electrons provides unique environment to investigate the relativistic magnetic field annihilation and reconnection. It opens a new way for understanding relativistic regimes of fast magnetic field dissipation particularly in space plasmas, where the large scale magnetic field energy is converted to the energy of the nonthermal charged particles. Here we review the recent results in relativistic magnetic reconnection based on the laser and collisionless plasma interactions. The basic mechanism and the theoretical model are discussed. Several proposed experimental setups for relativistic reconnection research are presented.
laboratory astrophysics laser plasmas interactions particle acceleration high energy density physics 
High Power Laser Science and Engineering
2021, 9(1): 010000e2
Author Affiliations
Abstract
1 Institute of Physics of the ASCR, ELI-Beamlines, Na Slovance 2, 18221 Prague, Czech Republic
2 Institute of Plasma Physics of the CAS, Za Slovankou 1782/3, 18200 Prague, Czech Republic
3 FNSPE, Czech Technical University in Prague, 11519 Prague, Czech Republic
4 School of Science, Xi’an Jiaotong University, Xi’an 710049 China
High-energy γ-photon generation via nonlinear Compton scattering and electron–positron pair creation via the Breit–Wheeler process driven by laser–plasma interaction are modeled, and a number of mechanisms are proposed. Owing to the small cross section, these processes require both an ultra-intense laser field and a relativistic electron bunch. The extreme conditions for such scenarios can be achieved through recent developments in laser technology. Photon emission via nonlinear Thomson and Compton scattering has been observed experimentally. High-energy positron beams generated via a multiphoton process have recently been observed too. This paper reviews the principles of γ-ray emission and e+e? pair creation in the context of laser–plasma interaction. Several proposed experimental setups for γ-ray emission and e+e? pair creation by ultra-intense laser pulses are compared in terms of their efficiency and the quality of the γ-photon and positron beams produced for ultrashort (15 fs) and longer (150 fs) multi-petawatt laser beams.
Matter and Radiation at Extremes
2019, 4(6): 064403

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!